High Dimensional Bayesian Optimization using Dropout
نویسندگان
چکیده
Scaling Bayesian optimization to high dimensions is challenging task as the global optimization of high-dimensional acquisition function can be expensive and often infeasible. Existing methods depend either on limited “active” variables or the additive form of the objective function. We propose a new method for high-dimensional Bayesian optimization, that uses a dropout strategy to optimize only a subset of variables at each iteration. We derive theoretical bounds for the regret and show how it can inform the derivation of our algorithm. We demonstrate the efficacy of our algorithms for optimization on two benchmark functions and two realworld applications training cascade classifiers and optimizing alloy composition.
منابع مشابه
A Bayesian encourages dropout
Dropout is one of the key techniques to prevent the learning from overfitting. It is explained that dropout works as a kind of modified L2 regularization. Here, we shed light on the dropout from Bayesian standpoint. Bayesian interpretation enables us to optimize the dropout rate, which is beneficial for learning of weight parameters and prediction after learning. The experiment result also enco...
متن کاملDeep Learning: A Bayesian Perspective
Deep learning is a form of machine learning for nonlinear high dimensional pattern matching and prediction. By taking a Bayesian probabilistic perspective, we provide a number of insights into more efficient algorithms for optimisation and hyper-parameter tuning. Traditional high-dimensional data reduction techniques, such as principal component analysis (PCA), partial least squares (PLS), redu...
متن کاملHyperparameters Optimization in Deep Convolutional Neural Network / Bayesian Approach with Gaussian Process Prior
Convolutional Neural Network is known as ConvNet have been extensively used in many complex machine learning tasks. However, hyperparameters optimization is one of a crucial step in developing ConvNet architectures, since the accuracy and performance are totally reliant on the hyperparameters. This multilayered architecture parameterized by a set of hyperparameters such as the number of convolu...
متن کاملActive Learning for High Dimensional Inputs using Bayesian Convolutional Neural Networks
The recent advances of deep learning in applied machine learning gained tremendous success, addressing the problem of learning from massive amounts of data. However, the challenge now is to learn data-efficiently with the ability to learn in complex domains without requiring deep learning models to be trained with large quantities of data. We present the novel framework of achieving data-effici...
متن کاملBayesian Proportional Hazard Analysis of the Timing of High School Dropout Decisions
In this paper, I study the timing of high school dropout decisions using data from High School and Beyond. I propose a Bayesian proportional hazard analysis framework that takes into account the specification of piecewise constant baseline hazard, the time-varying covariate of dropout eligibility, and individual, school, and state level random effects in the dropout hazard. I find that students...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017